257 research outputs found

    Modern means of communication in professional education

    Get PDF
    The purpose of the article is analysis of communication tools implementation in vocational education. In the course of scientific research, relevant means of communication were identified. The analysis of students' thesaurus development shows effectiveness of chosen educational tools and means in the process of professional training. Modern means of communication expand possibilities of professional training of students. Students must be ready to perform team activities, learning to conduct a professional dialogue in order to achieve the set goals

    Contact printing of colloidal nanocrystal thin films for hybrid organic/quantum dot optoelectronic devices

    Get PDF
    Novel thin film optoelectronic devices containing both inorganic colloidal semiconductor quantum dots (QDs) and organic semiconductor thin films have been widely investigated in recent years for a variety of applications. Here, we review one of the most versatile and successful methods developed to integrate these two dissimilar material classes into a functional multilayered device: contact printing of colloidal QD films. Experimental details regarding the contact printing process are outlined, and the key advantages of this QD deposition method over other commonly encountered techniques are discussed. The use of tapping mode atomic force microscopy (AFM) to effectively characterize QD film morphology both on an elastomeric stamp (before contact printing) and as-transferred to the organic semiconductor receiving film (after contact printing) is also described. Finally, we offer suggestions for future efforts directed toward the goal of rapid, continuous QD deposition over larger substrates for the advancement of hybrid optoelectronic thin film devices

    Current and projected heatwave-attributable occupational injuries, illnesses, and associated economic burden in Australia

    Get PDF
    Introduction: The costs of global warming are substantial. These include expenses from occupational illnesses and injuries (OIIs), which have been associated with increases during heatwaves. This study estimated retrospective and projected future heatwave-attributable OIIs and their costs in Australia. Materials and methods: Climate and workers’ compensation claims data were extracted from seven Australian capital cities representing OIIs from July 2005 to June 2018. Heatwaves were defined using the Excess Heat Factor. OIIs and associated costs were estimated separately per city and pooled to derive national estimates. Results were projected to 2030 (2016–2045) and 2050 (2036–2065). Results: The risk of OIIs and associated costs increased during heatwaves, with the risk increasing during severe and particularly extreme heatwaves. Of all OIIs, 0.13% (95% empirical confidence interval [eCI]: 0.11–0.16%) were heatwave-attributable, equivalent to 120 (95%eCI:70–181) OIIs annually. 0.25% of costs were heatwaveattributable (95%eCI: 0.18–0.34%), equal to $AU4.3 (95%eCI: 1.4–7.4) million annually. Estimates of heatwaveattributable OIIs by 2050, under Representative Concentration Pathway [RCP]4.5 and RCP8.5, were 0.17% (95% eCI: 0.10–0.27%) and 0.23% (95%eCI: 0.13–0.37%), respectively. National costs estimates for 2030 under RCP4.5 and RCP8.5 were 0.13% (95%eCI: 0.27-0.46%) and 0.04% (95%eCI: 0.66-0.60), respectively. These estimates for extreme heatwaves were 0.04% (95%eCI: 0.02–0.06%) and 0.04% (95%eCI: 0.01–0.07), respectively. Cost-AFs in 2050 were, under RCP4.5, 0.127% (95%eCI: 0.27-0.46) for all heatwaves and 0.04% (95%eCI: 0.01-0.09%) for extreme heatwaves. Attributable fractions were approximately similar to baseline when assuming theoretical climate adaptation. Discussion: Heatwaves represent notable and preventable portions of preventable OIIs and economic burden. OIIs are likely to increase in the future, and costs during extreme heatwaves in 2030. Workplace and public health policies aimed at heat adaptation can reduce heat-attributable morbidity and costs.Matthew A. Borg, Jianjun Xiang, Olga Anikeeva, Bertram Ostendorf, Blesson Varghese, Keith Dear, Dino Pisaniello, Alana Hansen, Kerstin Zander, Malcolm R. Sim, Peng B

    СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ОБРАЗОВАНИЯ И ПОЗИТИВНАЯ ОБРАЗОВАТЕЛЬНАЯ СРЕДА КАК КЛЮЧЕВЫЕ ФАКТОРЫ НЕПРЕРЫВНОГО ОБРАЗОВАНИЯ СРЕДНЕГО МЕДИЦИНСКОГО ПЕРСОНАЛА

    Get PDF
    The review article highlights a variety of modern educational technologies, included in the problem-based learning paradigm. A clear distinction between technologies according to their objectives, methods and principles of teaching has been performed. The effective educational technology that may be integrated in the continuing education framework has been determined. The key components for developing positive learning environment in clinical settings has been identified and described.В настоящей работе освещены современные технологии образования, включенные в парадигму проблемно-ориентированного обучения. Проведено разграничение методов по целям, методам и принципам обучения. Определена наиболее эффективная технология образования, применимая к концепции непрерывного образования. Определены и описаны ключевые компоненты позитивной образовательной среды в условиях клинической практики

    Advances in small lasers

    Get PDF
    M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe

    Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers

    Get PDF
    Polymer-based pressure sensors play a key role in realizing lightweight and inexpensive wearable devices for healthcare and environmental monitoring systems. Here, conductive core/shell polymer nanofibers composed of poly (vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP)/poly(3,4-ethylenedioxythiophene) (PEDOT) are fabricated using three-dimensional (3D) electrospinning and vapor deposition polymerization methods, and the resulting sponge-like 3D membranes are used to create piezoresistive-type pressure sensors. Interestingly, the PEDOT shell consists of well-dispersed spherical bumps, leading to the formation of a hierarchical conductive surface that enhances the sensitivity to external pressure. The sponge-like 3D mats exhibit a much higher pressure sensitivity than the conventional electrospun 2D mats due to their enhanced porosity and pressure-tunable contact area. Furthermore, large-area, wireless, 16 x 10 multiarray pressure sensors for the spatiotemporal mapping of multiple pressure points and wearable bands for monitoring blood pressure have been fabricated from these 3D mats. To the best of our knowledge, this is the first report of the fabrication of electrospun 3D membranes with nanoscopically engineered fibers that can detect changes in external pressure with high sensitivity. The developed method opens a new route to the mass production of polymer-based pressure sensors with high mechanical durability, which creates additional possibilities for the development of human-machine interfaces.11Ysciescopu

    Communicating uncertainty - how Australian television reported H1N1 risk in 2009: a content analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Health officials face particular challenges in communicating with the public about emerging infectious diseases of unknown severity such as the 2009 H1N1(swine 'flu) pandemic (pH1N1). Statements intended to create awareness and convey the seriousness of infectious disease threats can draw accusations of scare-mongering, while officials can be accused of complacency if such statements are not made. In these communication contexts, news journalists, often reliant on official sources to understand issues are pivotal in selecting and emphasising aspects of official discourse deemed sufficiently newsworthy to present to the public. This paper presents a case-study of news communication regarding the emergence of pH1N1.</p> <p>Methods</p> <p>We conducted a content analysis of all television news items about pH1N1. We examined news and current affairs items broadcast on 5 free-to-air Sydney television channels between April 25 2009 (the first report) and October 9 (prior to the vaccine release) for statements about <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> the seriousness of the disease <abbrgrp><abbr bid="B2">2</abbr></abbrgrp> how the public could minimise contagion <abbrgrp><abbr bid="B3">3</abbr></abbrgrp> government responses to emerging information.</p> <p>Results</p> <p>pH1N1 was the leading health story for eight of 24 weeks and was in the top 5 for 20 weeks. 353 news items were identified, yielding 3086 statements for analysis, with 63.4% related to the seriousness of the situation, 12.9% providing advice for viewers and 23.6% involving assurances from government. Coverage focused on infection/mortality rates, the spread of the virus, the need for public calm, the vulnerability of particular groups, direct and indirect advice for viewers, and government reassurances about effective management.</p> <p>Conclusions</p> <p>Overall, the reporting of 2009 pH1N1 in Sydney, Australia was generally non-alarmist, while conveying that pH1N1 was potentially serious. Daily infection rate tallies and commentary on changes in the pandemic alert level were seldom contextualised to assist viewers in understanding personal relevance. Suggestions are made about how future reporting of emerging infectious diseases could be enhanced.</p

    Noninvasive optical inhibition with a red-shifted microbial rhodopsin

    Get PDF
    Optogenetic inhibition of the electrical activity of neurons enables the causal assessment of their contributions to brain functions. Red light penetrates deeper into tissue than other visible wavelengths. We present a red-shifted cruxhalorhodopsin, Jaws, derived from Haloarcula (Halobacterium) salinarum (strain Shark) and engineered to result in red light–induced photocurrents three times those of earlier silencers. Jaws exhibits robust inhibition of sensory-evoked neural activity in the cortex and results in strong light responses when used in retinas of retinitis pigmentosa model mice. We also demonstrate that Jaws can noninvasively mediate transcranial optical inhibition of neurons deep in the brains of awake mice. The noninvasive optogenetic inhibition opened up by Jaws enables a variety of important neuroscience experiments and offers a powerful general-use chloride pump for basic and applied neuroscience.McGovern Institute for Brain Research at MIT (Razin Fellowship)United States. Defense Advanced Research Projects Agency. Living Foundries Program (HR0011-12-C-0068)Harvard-MIT Joint Research Grants Program in Basic NeuroscienceHuman Frontier Science Program (Strasbourg, France)Institution of Engineering and Technology (A. F. Harvey Prize)McGovern Institute for Brain Research at MIT. Neurotechnology (MINT) ProgramNew York Stem Cell Foundation (Robertson Investigator Award)National Institutes of Health (U.S.) (New Innovator Award 1DP2OD002002)National Institute of General Medical Sciences (U.S.) (EUREKA Award 1R01NS075421)National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1RC1MH088182)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Science Foundation (U.S.) (Career Award CBET 1053233)National Science Foundation (U.S.) (Grant EFRI0835878)National Science Foundation (U.S.) (Grant DMS0848804)Society for Neuroscience (Research Award for Innovation in Neuroscience)Wallace H. Coulter FoundationNational Institutes of Health (U.S.) (RO1 MH091220-01)Whitehall FoundationEsther A. & Joseph Klingenstein Fund, Inc.JPB FoundationPIIF FundingNational Institute of Mental Health (U.S.) (R01-MH102441-01)National Institutes of Health (U.S.) (DP2-OD-017366-01)Massachusetts Institute of Technology. Simons Center for the Social Brai

    Nanotools for Neuroscience and Brain Activity Mapping

    Get PDF
    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function
    • …
    corecore